
bender-hooks Documentation
Release 0.1.0

Bruno Oliveira, Fabio Menegazzo

December 11, 2014

Contents

1 Install 3

2 Documentation 5
2.1 Getting started . 5
2.2 API . 6

3 Support 9

4 Contribute 11

5 License 13

Python Module Index 15

i

ii

bender-hooks Documentation, Release 0.1.0

bender-hooks is a library which provides ways to easily create, search and invoke hooks anywhere in your code.

Hooks will be created as decorators so all you have to do is decorating functions you want to be invoked through that
hook.

It can be used to define interfaces or callbacks for your application.

Contents 1

bender-hooks Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Install

To install bender-hooks all it takes is one command line:

pip install bender-hooks

3

bender-hooks Documentation, Release 0.1.0

4 Chapter 1. Install

CHAPTER 2

Documentation

2.1 Getting started

First of all you have to create your hook signature. It is much like an interface definition where you only have to define
the parameters and related documentation.

definitions.py:

def grettings(greet, name):
"""
Called in scripts that want to print greetings.

:param greet: unicode
:param name: unicode
"""

def goodbye():
"""
Called in scripts that want to print goodbye messages.
"""

Now you can turn your definition into a decorator using bender-hooks. This way your decorator will work much like
an interface.

decorators.py:

import bender_hooks
import definitions
greetings = bender_hooks.make_decorator(definitions.greetings)
goodbye = bender_hooks.make_decorator(definitions.goodbye)

With decorator in hands you just have to mark the functions that will be invoked through the hook. The defined
parameters are not mandatory on such functions.

hello.py:

import decorators

@decorators.greetings
def a(greet, name):

print("%s, %s!" % (greet, name))

@decorators.greetings
def b(name):

5

bender-hooks Documentation, Release 0.1.0

print("Hi, %s!" % name)

@decorators.greetings
def c():

print("Hi there!")

@decorators.goodbye
def d():

print("Farewell!")

As all grettings functions are already marked, just ask bender-hooks to call them:

>>> import bender_hooks
>>> import hello
>>> bender_hooks.call_all_hooks(hello, ’greetings’, greet=’Welcome’, name=’John’)
Welcome, John!
Hi, John!
Hi there!
>>> bender_hooks.call_all_hooks(hello, ’goodbye’)
Farewell!

Sometimes it is necessary having just one implementation for a given hook. To make sure of this just call:

>>> bender_hooks.call_unique_hook(hello, ’greetings’, greet=’Welcome’, name=’John’)
bender_hooks.HookError: <module ’hello’ from ’hello.pyc’> can implement greetings at most one time
>>> bender_hooks.call_unique_hook(hello, ’goodbye’)
Farewell!

This is the basics! For more detailed information please refer to API documentation.

2.2 API

This document brings the public API of bender-hooks.

exception bender_hooks.HookError
Error raised for expected and known cases of bender-hooks.

bender_hooks.call(hook, **kwargs)
Responsible for invoking given hook. As hooks not necessarily defines all arguments, this function will make
sure that the given one will satisfy the hook. Example:

def foo(a, b):
"""
My decorator definition.
"""

Creating decorator.
dec = bender_hooks.make_decorator(foo)

Decorating. Only one parameter defined.
@foo
def bar(b):

print(b)

Invoking.
bender_hooks.call(bar, a=1) # Invalid: ‘‘a‘‘ is not defined at ‘‘bar‘‘
bender_hooks.call(bar, b=2) # Valid
bender_hooks.call(bar, c=3) # Invalid: ‘‘c‘‘ is not defined at ‘‘bar‘‘ neither ‘‘foo‘‘

6 Chapter 2. Documentation

bender-hooks Documentation, Release 0.1.0

bender_hooks.call(bar, a=1, b=2) # Valid: ‘‘a‘‘ is defined at ‘‘foo‘‘ but will be ignored.
bender_hooks.call(bar, b=2, c=3) # Invalid
bender_hooks.call(bar, a=1, b=2, c=3) # Invalid

Parameters hook (callable) – Already decorated function.

Returns It depends on what will be returned by given hook.

Raises HookError if given hook is not decorated.

bender_hooks.call_all_hooks(obj, hook_name, **kwargs)
Responsible for search and invoke all hooks with the given hook_name under obj.

See also:

find_hooks()

See also:

call()

bender_hooks.call_unique_hook(obj, hook_name, **kwargs)
Responsible for search and invoke a hook with the given hook_name under obj, making sure that only one
hook exists.

Raises HookError if more than one hooks are found.

See also:

find_hooks()

See also:

call()

bender_hooks.find_hooks(obj, hook_name)
Responsible for search at obj hooks with the given hook_name.

Parameters

• obj – Object (can be a module or instance) to search for hooks.

• hook_name (unicode) – Name of hook to search.

Return type list(callable)

Returns All hooks found into the given obj.

bender_hooks.make_decorator(hook_decl, inputs=())
Responsible for turning a hook declaration into a decorator.

Parameters

• hook_decl (callable) – The definition that will be turn into a decorator. Example:

def grettings(greet, name):
"""
Called in scripts that want to print greetings.

:param greet: unicode
:param name: unicode
"""

If any code is placed inside the given definition it will be ignored.

2.2. API 7

bender-hooks Documentation, Release 0.1.0

• inputs (tuple | list) – Parameters that must be given to decorator. Example:

dec = bender_hooks.make_decorator(foo, inputs=(’alpha’, ’bravo’))

@dec(’A’, ’B’)
def my_func():

pass

my_func.inputs[’alpha’] == ’A’
my_func.inputs[’bravo’] == ’B’

Return type callable

Returns The created decorator.

Raises HookError when given arguments are not valid.

8 Chapter 2. Documentation

CHAPTER 3

Support

Need help? Click here and open a new issue. You’ll get your answer ASAP.

9

https://github.com/bender-bot/bender-hooks/issues?state=open

bender-hooks Documentation, Release 0.1.0

10 Chapter 3. Support

CHAPTER 4

Contribute

bender-hooks is under development, so if you want to join the team, you are welcome.

• Feel free to open issues related to bugs or ideas.

• If you are a developer:

– Fork bender-hooks before making any changes.

– Write tests.

– Create a Pull Request so changes can be merged.

11

https://github.com/bender-bot/bender-hooks/issues?state=open

bender-hooks Documentation, Release 0.1.0

12 Chapter 4. Contribute

CHAPTER 5

License

bender-hooks is licensed under LGPL v3.0 license.

13

http://www.gnu.org/licenses/lgpl-3.0-standalone.html

bender-hooks Documentation, Release 0.1.0

14 Chapter 5. License

Python Module Index

b
bender_hooks, 6

15

bender-hooks Documentation, Release 0.1.0

16 Python Module Index

Index

B
bender_hooks (module), 6

C
call() (in module bender_hooks), 6
call_all_hooks() (in module bender_hooks), 7
call_unique_hook() (in module bender_hooks), 7

F
find_hooks() (in module bender_hooks), 7

H
HookError, 6

M
make_decorator() (in module bender_hooks), 7

17

	Install
	Documentation
	Getting started
	API

	Support
	Contribute
	License
	Python Module Index

